%matplotlib inline
import time
import torch
import torch.nn.functional as F
import torchvision
import numpy as np
from PIL import Image
from tqdm import tqdm
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
print(torch.__version__, torchvision.__version__)
1.11.0+cu113 0.12.0+cu113
Pascal VOC2012语义分割数据集
# 本函数已保存在d2lzh_pytorch中方便以后使用
def read_voc_images(root="../../data/VOCdevkit/VOC2012",
is_train=True, max_num=None):
txt_fname = '%s/ImageSets/Segmentation/%s' % (
root, 'train.txt' if is_train else 'val.txt')
with open(txt_fname, 'r') as f:
images = f.read().split()
if max_num is not None:
images = images[:min(max_num, len(images))]
features, labels = [None] * len(images), [None] * len(images)
for i, fname in tqdm(enumerate(images)):
features[i] = Image.open('%s/JPEGImages/%s.jpg' % (root, fname)).convert("RGB")
labels[i] = Image.open('%s/SegmentationClass/%s.png' % (root, fname)).convert("RGB")
return features, labels # PIL image
voc_dir = "../../data/VOCdevkit/VOC2012"
train_features, train_labels = read_voc_images(voc_dir, max_num=100)
n = 5
imgs = train_features[0:n] + train_labels[0:n]
d2l.show_images(imgs, 2, n);
# 本函数已保存在d2lzh_pytorch中方便以后使用
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]
# 本函数已保存在d2lzh_pytorch中方便以后使用
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
colormap2label = torch.zeros(256 ** 3, dtype=torch.uint8)
for i, colormap in enumerate(VOC_COLORMAP):
colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i
# 本函数已保存在d2lzh_pytorch中方便以后使用
def voc_label_indices(colormap, colormap2label):
"""
convert colormap (PIL image) to colormap2label (uint8 tensor).
"""
colormap = np.array(colormap.convert("RGB")).astype('int32')
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
+ colormap[:, :, 2])
return colormap2label[idx]
y = voc_label_indices(train_labels[0], colormap2label)
y[105:115, 130:140], VOC_CLASSES[1]
(tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]], dtype=torch.uint8), 'aeroplane')
预处理数据
# 本函数已保存在d2lzh_pytorch中方便以后使用
def voc_rand_crop(feature, label, height, width):
"""
Random crop feature (PIL image) and label (PIL image).
"""
i, j, h, w = torchvision.transforms.RandomCrop.get_params(
feature, output_size=(height, width))
feature = torchvision.transforms.functional.crop(feature, i, j, h, w)
label = torchvision.transforms.functional.crop(label, i, j, h, w)
return feature, label
imgs = []
for _ in range(n):
imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);
自定义语义分割数据集类
# 本函数已保存在d2lzh_pytorch中方便以后使用
class VOCSegDataset(torch.utils.data.Dataset):
def __init__(self, is_train, crop_size, voc_dir, colormap2label, max_num=None):
"""
crop_size: (h, w)
"""
self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.tsf = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=self.rgb_mean,
std=self.rgb_std)
])
self.crop_size = crop_size # (h, w)
features, labels = read_voc_images(root=voc_dir,
is_train=is_train,
max_num=max_num)
self.features = self.filter(features) # PIL image
self.labels = self.filter(labels) # PIL image
self.colormap2label = colormap2label
print('read ' + str(len(self.features)) + ' valid examples')
def filter(self, imgs):
return [img for img in imgs if (
img.size[1] >= self.crop_size[0] and
img.size[0] >= self.crop_size[1])]
def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
*self.crop_size)
return (self.tsf(feature),
voc_label_indices(label, self.colormap2label))
def __len__(self):
return len(self.features)
读取数据集
crop_size = (320, 480)
max_num = 100
voc_train = VOCSegDataset(True, crop_size, voc_dir, colormap2label, max_num)
voc_test = VOCSegDataset(False, crop_size, voc_dir, colormap2label, max_num)
100it [00:00, 104.07it/s] 6it [00:00, 56.42it/s]
read 75 valid examples
100it [00:01, 56.74it/s]
read 77 valid examples
batch_size = 64
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True,
drop_last=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(voc_test, batch_size, drop_last=True,
num_workers=num_workers)
for X, Y in train_iter:
print(X.dtype, X.shape)
print(y.dtype, Y.shape)
break
torch.float32 torch.Size([64, 3, 320, 480]) torch.uint8 torch.Size([64, 320, 480])
Comments NOTHING