import torch
from torch import nn
print(torch.__version__)
1.11.0+cu113
class CenteredLayer(nn.Module):
def __init__(self, **kwargs):
super(CenteredLayer, self).__init__(**kwargs)
def forward(self, x):
return x - x.mean()
layer = CenteredLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))
tensor([-2., -1., 0., 1., 2.])
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
y = net(torch.rand(4, 8))
y.mean().item()
0.0
含模型参数的自定义层
class MyListDense(nn.Module):
def __init__(self):
super(MyListDense, self).__init__()
self.params = nn.ParameterList([nn.Parameter(torch.randn(4, 4)) for i in range(3)])
self.params.append(nn.Parameter(torch.randn(4, 1)))
def forward(self, x):
for i in range(len(self.params)):
x = torch.mm(x, self.params[i])
return x
net = MyListDense()
print(net)
MyListDense( (params): ParameterList( (0): Parameter containing: [torch.FloatTensor of size 4x4] (1): Parameter containing: [torch.FloatTensor of size 4x4] (2): Parameter containing: [torch.FloatTensor of size 4x4] (3): Parameter containing: [torch.FloatTensor of size 4x1] ) )
class MyDictDense(nn.Module):
def __init__(self):
super(MyDictDense, self).__init__()
self.params = nn.ParameterDict({
'linear1': nn.Parameter(torch.randn(4, 4)),
'linear2': nn.Parameter(torch.randn(4, 1))
})
self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增
def forward(self, x, choice='linear1'):
return torch.mm(x, self.params[choice])
net = MyDictDense()
print(net)
MyDictDense( (params): ParameterDict( (linear1): Parameter containing: [torch.FloatTensor of size 4x4] (linear2): Parameter containing: [torch.FloatTensor of size 4x1] (linear3): Parameter containing: [torch.FloatTensor of size 4x2] ) )
x = torch.ones(1, 4)
print(net(x, 'linear1'))
print(net(x, 'linear2'))
print(net(x, 'linear3'))
tensor([[1.5082, 1.5574, 2.1651, 1.2409]], grad_fn=<MmBackward>) tensor([[-0.8783]], grad_fn=<MmBackward>) tensor([[ 2.2193, -1.6539]], grad_fn=<MmBackward>)
net = nn.Sequential(
MyDictDense(),
MyListDense(),
)
print(net)
print(net(x))
Sequential( (0): MyDictDense( (params): ParameterDict( (linear1): Parameter containing: [torch.FloatTensor of size 4x4] (linear2): Parameter containing: [torch.FloatTensor of size 4x1] (linear3): Parameter containing: [torch.FloatTensor of size 4x2] ) ) (1): MyListDense( (params): ParameterList( (0): Parameter containing: [torch.FloatTensor of size 4x4] (1): Parameter containing: [torch.FloatTensor of size 4x4] (2): Parameter containing: [torch.FloatTensor of size 4x4] (3): Parameter containing: [torch.FloatTensor of size 4x1] ) ) ) tensor([[-101.2394]], grad_fn=<MmBackward>)
Comments NOTHING